首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 微分几何 >> 李群
Questions in category: 李群 (Lie group).

构造 $SU(2)$ 到 $SO(3)$ 的同态.

Posted by haifeng on 2012-07-17 12:58:13 last update 2012-08-02 16:59:52 | Answers (3)


$O(3)$ 是由所有保持内积不变或等价的保持 $x_1^2+x_2^2+x_3^2$ 不变的线性变换构成的群. 也称三维旋转群. $O(3)$ 中的元素一一对应到正交矩阵. 因此 $O(3)$ 也可定义为

\[O(3)=\{A\in\mathcal{M}_{3\times 3}(\mathbb{R})\cong\mathbb{R}^{3\times 3}\mid A^T A=I\}.\]

其中 $\mathcal{M}_{3\times 3}(\mathbb{R})$ 是指所有 $3\times 3$ 矩阵的集合, $I$ 指单位矩阵.

易见 $O(3)$ 中的方阵, 其行列式要么是 $+1$, 要么是 $-1$. 前者这样的矩阵所对应的线性变换称为纯旋转(变换)(pure rotation), 其构成的集合记为

\[SO(3)=\{A\in O(3)\mid\det{A}=1\},\]

容易验证它是 $O(3)$ 的一个子群.

后者这样的矩阵所对应的线性变换描述了一个复合变换: 旋转+反射.


酉群 $U(n)$ 定义为:

\[U(n)=\{A\in\mathcal{M}_{3\times 3}(\mathbb{C})\mid A^*A=I_n\},\]

其中 $A^*$ 指矩阵 $A$ 的共轭转置(也叫 Hermitian conjugate), 即 $A^*=\bar{A}^T$, $I_n$ 是 $n$ 阶单位矩阵.

\[SU(n)=\{A\in U(n)\mid \det{A}=1\}.\]